Graph the relation and connect the points. Then graph the inverse. Identify the domain and range for each relation.
1)

Relation	
x	y
0	2
1	5
5	6
8	9

Inverse	
x	y
2	0
5	1
6	1
6	5
9	8

2)

Relation	
x	y
3	-1
4	-2
1	-4
-1	-4

Domain:

Range:

3) Find the inverse of the function. Also find the domain, range, and determine if the inverse is a function.

Function	Domain	Range	Inverse	Is the inverse a function?
$f(x)=\{(1,2),(2,2),(3,4)\}$	$\{1,2,3\}$	$\{2,4\}$,	$f^{-1}(x)=\{(2,1),(2,2),(4,3)\}$	No
$f(x)=\{(1,3),(2,5),(3,7)\}$	$\{1,2,3\}$	$\{3,5,7\}$	$f^{-1}(x)=\{(3,1),(5,2),(7,3)\}$	Yes

4) A function $g(x)$ has an inverse $g^{-1}(x)$. Find the values of the function and its inverse.

x	$g(x)$
3	4
2	1
8	7

a) $g(2)=1$
b) $g(8)=7$
c) $g(3)=4$
d) $g^{-1}(1)=2$
e) $g^{-1}(4)=3$
f) $g^{-1}(7)=8$

Use inverse operations to write the inverse of each function.
5) $f(x)=4 x$
6) $f(x)=x+3$
$f^{-1}(x)=x-3$
7) $f(x)=\frac{x}{2}+3$
$f^{-1}(x)=2 x-6$
8) $f(x)=\frac{1}{2}(3-3 x)$
9) $f(x)=\frac{3 x-5}{2}$
10) $f(x)=x^{2}+3$

$$
f^{-1}(x)= \pm \sqrt{x-3}
$$

$$
f^{-1}(x)=\frac{2}{3} x+\frac{5}{3}
$$

$$
f^{-1}(x)=1-\frac{2}{3} x
$$

11) $f(x)=2 x^{2}+4$
$f^{-1}(x)= \pm \sqrt{\frac{x-4}{2}}$
12) $f(x)=\sqrt{2 x+3}-4$
$f^{-1}(x)=\frac{(x-4)^{2}-3}{2}$
13) $f(x)=3$
$x=3$
14) Graph $f(x)=3 x-4$. Then write and graph the inverse.

$$
f(x)=\frac{1}{3} x+\frac{4}{3}
$$

15) Find the coordinates of the vertices of the inverse for the figure on the left.

16) A theater sells tickets for $\$ 20$. If you pay by credit card, the theater adds a service charge of $\$ 3.00$ to the entire order.
a) Write a function that gives the amount billed C to the credit card as a function of the number n of tickets purchased.

$$
C=20 n+3
$$

b) Write the inverse function, and use it to find the number of tickets purchased when the credit card bill is $\$ 303$.

$$
n=\frac{C-3}{20}
$$

c) Is it possible to have a total of $\$ 213$ billed to your credit card for these tickets? Explain.

$$
\text { No, when } C=213, n \text { is not an integer. }
$$

Give the inverse of each linear function, where $y=f(x)$.
17) $y=m x+b$
18) $a x+b y=c$
19) $y-y_{1}=m\left(x-x_{1}\right)$
$f^{-1}(x)=\frac{x}{m}-\frac{b}{m}$

$$
f^{-1}(x)=-\frac{b}{a} x+\frac{c}{a}
$$

$$
f^{-1}(x)=\frac{x-y_{1}}{m}+x_{1}
$$

