Graph the relation and connect the points. Then graph the inverse. Identify the domain and range for each relation.

2)

Domain:

Range:

Inverse		
x	У	
-1	3	
-2	4	
-4	1	
-4	-1	

Function	Domain	Range	Inverse	Is the inverse a function?
$f(x) = \{(1, 2), (2, 2), (3, 4)\}$	{1, 2, 3}	{2, 4,}	$f^{-1}(x) = \{(2, 1), (2, 2), (4, 3)\}$	No
$f(x) = \{(1, 3), (2, 5), (3, 7)\}$	{1, 2, 3}	{3, 5, 7}	$f^{-1}(x) = \{(3, 1), (5, 2), (7, 3)\}$	Yes

3) Find the inverse of the function. Also find the domain, range, and determine if the inverse is a function.

4) A function g(x) has an inverse $g^{-1}(x)$. Find the values of the function and its inverse.

x	g(x)	a) $g(2) = 1$	d)	$g^{-1}(1) = 2$
3	4	b) $q(8) = 7$	e)	$a^{-1}(4) = 3$
2	1	(0) = g(0) = f	0)	g (+) = <u></u>
8	7	c) $g(3) = 4$	f)	$g^{-1}(7) = 8$

Use inverse operations to write the inverse of each function.

5)
$$f(x) = 4x$$

 $f(x) = \frac{x}{4}$
6) $f(x) = x+3$
 $f^{-1}(x) = \frac{x}{4}$
7) $f(x) = \frac{x}{2}+3$
 $f^{-1}(x) = x-3$

8)
$$f(x) = \frac{1}{2}(3-3x)$$

9) $f(x) = \frac{3x-5}{2}$
10) $f(x) = x^2 + 3$
 $f^{-1}(x) = 1 - \frac{2}{3}x$
 $f^{-1}(x) = \frac{2}{3}x + \frac{5}{3}$

11)
$$f(x) = 2x^2 + 4$$

 $f(x) = \frac{12}{\sqrt{2x+3}} + 4$
12) $f(x) = \sqrt{2x+3} - 4$
 $f(x) = 3$
 $x = 3$
 $x = 3$

14) Graph f(x) = 3x - 4. Then write and graph the inverse.

$$f(x) = \frac{1}{3}x + \frac{4}{3}$$

15) Find the coordinates of the vertices of the inverse for the figure on the left.

16) A theater sells tickets for \$20. If you pay by credit card, the theater adds a service charge of \$3.00 to the entire order.

a) Write a function that gives the amount billed C to the credit card as a function of the number n of tickets purchased.

$$C = 20n + 3$$

b) Write the inverse function, and use it to find the number of tickets purchased when the credit card bill is \$303.

<i>n</i> =	C-3
	20

c) Is it possible to have a total of \$213 billed to your credit card for these tickets? Explain.

No, when C = 213, *n* is not an integer.

Give the inverse of each linear function, where y = f(x).

17) y = mx + b	$18) \ ax + by = c$	19) $y - y_1 = m(x - x_1)$
$f^{-1}(x) = \frac{x}{m} - \frac{b}{m}$	$f^{-1}(x) = -\frac{b}{a}x + \frac{c}{a}$	$f^{-1}(x) = \frac{x - y_1}{m} + x_1$